
Rational Gaussian wavelets and corresponding model driven neural networks*
Author(s) -
Attila Miklos Amon,
Kristian Fenech,
Peter Kovacs,
Tamas Dozsa
Publication year - 2025
Publication title -
ieee transactions on signal processing
Language(s) - English
Resource type - Magazines
SCImago Journal Rank - 1.638
H-Index - 270
eISSN - 1941-0476
pISSN - 1053-587X
DOI - 10.1109/tsp.2025.3592099
Subject(s) - signal processing and analysis , communication, networking and broadcast technologies , computing and processing
In this paper we introduce a highly adaptive continuous wavelet transform using Gaussian wavelets multiplied by an appropriate rational term. The zeros and poles of this rational modifier act as free parameters and their choice highly influences the shape of the mother wavelet. This allows the proposed construction to approximate signals with complex morphology using only a few wavelet coefficients. We show that the proposed rational Gaussian wavelets are admissible and provide numerical approximations of the wavelet coefficients using variable projection operators. In addition, we show how the proposed variable projection based rational Gaussian wavelet transform can be used in neural networks to obtain a highly interpretable feature learning layer. We demonstrate the effectiveness of the proposed scheme through a number of numerical experiments including biomedical applications, and the detection of abnormal road surface based on tire sensor signals.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom