
PC-SRGAN: Physically Consistent Super-Resolution Generative Adversarial Network for General Transient Simulations
Author(s) -
Md Rakibul Hasan,
Pouria Behnoudfar,
Dan MacKinlay,
Thomas Poulet
Publication year - 2025
Publication title -
ieee transactions on pattern analysis and machine intelligence
Language(s) - English
Resource type - Magazines
SCImago Journal Rank - 3.811
H-Index - 372
eISSN - 1939-3539
pISSN - 0162-8828
DOI - 10.1109/tpami.2025.3596647
Subject(s) - computing and processing , bioengineering
Machine Learning, particularly Generative Adversarial Networks (GANs), has revolutionised Super-Resolution (SR). However, generated images often lack physical meaningfulness, which is essential for scientific applications. Our approach, PC-SRGAN, enhances image resolution while ensuring physical consistency for interpretable simulations. PC-SRGAN significantly improves both the Peak Signal-to-Noise Ratio and the Structural Similarity Index Measure compared to conventional SR methods, even with limited training data (e.g., only 13% of training data is required to achieve performance similar to SRGAN). Beyond SR, PC-SRGAN augments physically meaningful machine learning, incorporating numerically justified time integrators and advanced quality metrics. These advancements promise reliable and causal machine-learning models in scientific domains. A significant advantage of PC-SRGAN over conventional SR techniques is its physical consistency, which makes it a viable surrogate model for time-dependent problems. PC-SRGAN advances scientific machine learning by improving accuracy and efficiency, enhancing process understanding, and broadening applications to scientific research. We publicly release the complete source code of PC-SRGAN and all experiments at https://github.com/hasan-rakibul/PC-SRGAN .
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom