z-logo
open-access-imgOpen Access
Simultaneous Estimation of Wrist Joint Angle and Torque during Isokinetic Contraction based on HD-sEMG
Author(s) -
Mingjie Yan,
Zhe Chen,
Jianmin Li,
Jinhua Li,
Lizhi Pan
Publication year - 2025
Publication title -
ieee transactions on neural systems and rehabilitation engineering
Language(s) - English
Resource type - Magazines
SCImago Journal Rank - 1.093
H-Index - 140
eISSN - 1558-0210
pISSN - 1534-4320
DOI - 10.1109/tnsre.2025.3596839
Subject(s) - bioengineering , computing and processing , robotics and control systems , signal processing and analysis , communication, networking and broadcast technologies
The establishment of a natural and smooth human-computer interface is crucial for myoelectric control, which requires an effective decoding method for movement intention. Based on high-density surface electromyography (HD-sEMG), this study explored a method to simultaneously estimate wrist joint angle and torque during isokinetic contraction. Ten able-bodied individuals were instructed to complete wrist isokinetic flexion and extension tasks with different movement patterns, and the HD-sEMG signals were collected. To decode these signals, a convolutional neural network (CNN) incorporating the global attention mechanism was established, named global attention convolutional neural network (GACNN). Six other decoding models were also used to continuously estimate the wrist joint angle and torque, including support vector machine (SVM), residual network (ResNet), long short-term memory (LSTM), transformer-based model (TBM), muscle synergy-based graph attention networks (MSGAT-LSTM), and spatio-temporal feature extraction network (STFEN). Evaluation metrics including normalized root mean square error (NRMSE) and Pearson’s correlation coefficient (PCC) were applied to evaluate the estimation performance of the seven models. The GACNN showed significantly better estimation performance than SVM, LSTM, ResNet, STFEN and it also demonstrated superior performance over TBM and MSGAT-LSTM in some estimation cases. On average, for all subjects, NRMSE and PCC of the GACNN were 0.080 ± 0.013 and 0.955 ± 0.016. The result shows the superiority of the neural network incorporating global attention mechanism, which is of great significance for the application of human-computer interaction.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom