z-logo
open-access-imgOpen Access
Adaptive Neurofeedback Training Using a Virtual Reality Game Enhances Motor Imagery Performance in Brain-Computer Interfaces
Author(s) -
Kun Wang,
Yuwei Liu,
Feifan Tian,
Weibo Yi,
Yang Zhang,
Tzyy-Ping Jung,
Minpeng Xu,
Dong Ming
Publication year - 2025
Publication title -
ieee transactions on neural systems and rehabilitation engineering
Language(s) - English
Resource type - Magazines
SCImago Journal Rank - 1.093
H-Index - 140
eISSN - 1558-0210
pISSN - 1534-4320
DOI - 10.1109/tnsre.2025.3592988
Subject(s) - bioengineering , computing and processing , robotics and control systems , signal processing and analysis , communication, networking and broadcast technologies
Neurofeedback training (NFT) has been widely used in motor rehabilitation. However, NFT combined with motor imagery-based brain-computer interface (MI-BCI) faces challenges such as mental fatigue and non-personalized training strategies. Therefore, we proposed an adaptive NFT based on a VR game that simulates real-life motor tasks to improve training efficiency. We conducted a detailed comparative analysis of the efficiency of the VR-based NFT and traditional Graz-based NFT. Forty-eight healthy subjects were randomly assigned to five groups and underwent various NFT protocols. Among them, the subjects in the four experimental groups were required to perform the NFT three times over five days, including virtual or real scenarios, as well as unilateral or bilateral hands training. We evaluated training effects by analyzing EEG features and classification performance, while online recognition duration served as the primary measure for assessing the adaptive NFT strategy. EEG analysis showed that VR-based NFT significantly enhanced the Event-related desynchronization (ERD) activations in the sensorimotor cortices over five days. The VR-based NFT group achieved a classification accuracy of 81.85%, representing a 10.14% improvement from baseline, which exceeded the 6.43% increase observed in the Graz-based NFT group. Furthermore, implementing the adaptive NFT strategy reduced the mean task duration by over 30% compared to the fixed-time training protocol. The results demonstrated that the adaptive MI-BCI-based NFT in a VR game achieves superior training outcomes while reducing training duration. These findings suggest the promising potential for applying MI-BCI NFT with VR games in motor rehabilitation following a stroke.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom