
TBI-Related EMG Characterization of Neuromuscular Responses to Anterior Perturbations While Standing
Author(s) -
Kiran K. Karunakaran,
Easter S. Suviseshamuthu,
Prasad Tendolkar,
Guang H. Yue,
Rakesh Pilkar
Publication year - 2025
Publication title -
ieee transactions on neural systems and rehabilitation engineering
Language(s) - English
Resource type - Magazines
SCImago Journal Rank - 1.093
H-Index - 140
eISSN - 1558-0210
pISSN - 1534-4320
DOI - 10.1109/tnsre.2025.3592477
Subject(s) - bioengineering , computing and processing , robotics and control systems , signal processing and analysis , communication, networking and broadcast technologies
Traumatic brain injury (TBI) causes deficits in sensory systems, sensorimotor integration, and/or neuromuscular response, thus impairing essential postural response mechanisms such as compensatory postural adjustments. This, in turn, results in balance deficits and increases the risk of falls, affecting the activities of daily living and quality of life. Therefore, the goal of this study is to quantify the differences in neuromuscular responses based on electromyography (EMG) between people with TBI (pwTBI) and age-matched healthy controls (HCs). We investigated the differences between eight HCs and nine pwTBI in the following EMG characteristics: muscle activity (EMG) onset, EMG burst area, and median frequency, in response to anterior (forward) platform perturbations at four different amplitudes during standing. The results showed delayed muscle activation onset, larger EMG bursts, and decreased EMG median frequency in pwTBI compared to HCs, suggesting an altered neuromuscular response to platform perturbations in pwTBI.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom