z-logo
open-access-imgOpen Access
Performance enhancement of steady-state visual evoked field-based brain–computer interfaces incorporating MEG source imaging
Author(s) -
Ye-Sung Kim,
Hyojeong Han,
Cheong-Un Kim,
Soo-In Choi,
Min-Young Kim,
Chang-Hwan Im
Publication year - 2025
Publication title -
ieee transactions on neural systems and rehabilitation engineering
Language(s) - English
Resource type - Magazines
SCImago Journal Rank - 1.093
H-Index - 140
eISSN - 1558-0210
pISSN - 1534-4320
DOI - 10.1109/tnsre.2025.3590576
Subject(s) - bioengineering , computing and processing , robotics and control systems , signal processing and analysis , communication, networking and broadcast technologies
Recent advancements in helmet-type magnetoencephalography (MEG) systems that operate without liquid helium, such as optically pumped magnetometer (OPM)-based MEG, have increased interest in MEG-based brain–computer interfaces (BCIs). Among various BCI paradigms, steady-state visual evoked field (SSVEF)-based BCIs have been actively studied owing to their high information transfer rate (ITR) and low demand for calibration sessions. Although MEG provides excellent spatial resolution and whole-head coverage, conventional algorithms such as the filter bank-driven multivariate synchronization index (FBMSI) do not fully exploit these advantages. To overcome this limitation, this study employed MEG source imaging to utilize information from whole-head MEG recordings fully and developed a novel weighting method called the averaged source location-based weighting (ASLW). ASLW leverages the averaged source locations of SSVEF signals to enhance BCI performance. Experimental results with 20 participants demonstrated that integrating ASLW with the FBMSI algorithm (ASLW-FBMSI) significantly improved both the classification accuracy and ITR across all tested window sizes. Notably, the largest performance gains included a 13.89% accuracy improvement at a 3-s window size and a 13.12 bits/min increase in ITR at a 2.5-s window size. Additionally, the ASLW-FBMSI algorithm exhibited a short processing delay of 0.107 s at a 4-s data length and was successfully validated in online BCI experiments with 20 participants. Although tested in SQUID-MEG in this study, our findings demonstrate the effectiveness of ASLW in significantly enhancing the overall performance of SSVEF-based BCIs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom