z-logo
open-access-imgOpen Access
Resting-State Network Transitions in Temporal Lobe Epilepsy: Insights from MEG Based Dynamic Functional Connectivity
Author(s) -
M.V. Suhas,
Sanjib Sinha,
Karunakar Kotegar,
M Ravindranadh Chowdary,
K Raghavendra,
Ajay Asranna,
L.G. Viswanathan,
N. Mariyappa,
H Anitha
Publication year - 2025
Publication title -
ieee transactions on neural systems and rehabilitation engineering
Language(s) - English
Resource type - Magazines
SCImago Journal Rank - 1.093
H-Index - 140
eISSN - 1558-0210
pISSN - 1534-4320
DOI - 10.1109/tnsre.2025.3576108
Subject(s) - bioengineering , computing and processing , robotics and control systems , signal processing and analysis , communication, networking and broadcast technologies
Temporal Lobe Epilepsy (TLE), a common form of focal epilepsy, is associated with recurrent seizures originating in the temporal lobe, often leading to cognitive and psychological impairments. This study explores dynamic functional connectivity (dFC) patterns in TLE patients compared to Healthy Controls (HC) using resting-state Magnetoencephalography (MEG) data. dFC, which captures the temporal variability of brain networks, was analyzed across eight frequency bands (delta, theta, alpha, beta, low gamma, mid gamma, high gamma, and broadband) in 21 TLE patients and 21 HC. Nine dFC metrics, including state transitions, connectivity strength, network stability, and overall network movement, were derived using amplitude envelope correlations between 68 brain regions mapped to resting-state networks. Results reveal heightened variability in beta band transitions and increased entropy in delta band transitions, indicating unstable and diverse network configurations. TLE patients showed reduced dwell time in visual networks and increased dwell time in the dorsal attention network, suggesting compensatory mechanisms. Reduced connectivity in alpha and beta bands, coupled with increased variability in theta and low gamma bands, highlights widespread network instability. These findings emphasize dFC metrics as potential biomarkers for TLE, offering insights for targeted therapeutic interventions to stabilize brain dynamics.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom