
Optimizing Neural Recording Front-Ends Towards Enhanced Spike Sorting Accuracy in High-Channel-Count Systems
Author(s) -
Yunzhu Chen,
Xiaolin Yang,
Georges Gielen,
Carolina Mora Lopez
Publication year - 2025
Publication title -
ieee transactions on neural systems and rehabilitation engineering
Language(s) - English
Resource type - Magazines
SCImago Journal Rank - 1.093
H-Index - 140
eISSN - 1558-0210
pISSN - 1534-4320
DOI - 10.1109/tnsre.2025.3574917
Subject(s) - bioengineering , computing and processing , robotics and control systems , signal processing and analysis , communication, networking and broadcast technologies
Spike sorting is a pivotal signal-processing technique used to extract information from raw extracellular recordings. Its performance is influenced by the characteristics of the neural recording front-end. This study explores how design choices in amplifiers, filters, and analog-to-digital converters (ADCs) affect the accuracy of well-established spike sorting algorithms. Our primary objective is to identify the minimal requirements that ensure high sorting accuracy while facilitating power- and area-efficient analog front-ends, which is especially needed for multi-channel recording-only applications. To achieve this, we use both synthetic and real datasets, serving as ground truth, processed through a generic MATLAB model of a neural recording front-end that simulates key electrical parameters impacting the signal integrity. These include the filter order and cutoff frequency, ADC resolution, ADC sampling frequency, and nonlinearity. Our findings indicate that optimal spike-sorting results are obtained with a 1st-order bandpass Butterworth filter ranging from 700 Hz to 7.5 kHz, coupled with an ADC that offers a 15-kHz sampling frequency at 8-bit resolution and no missing codes. These insights are crucial for designing high-channel-count neural interfaces where CMOS circuits must efficiently be optimized.
Empowering knowledge with every search
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom