A stabilized Two-Step Formulation of Maxwell’s Equations in the time-domain
Author(s) -
Leon Herles,
Mario Mally,
Jorg Ostrowski,
Sebastian Schops,
Melina Merkel
Publication year - 2025
Publication title -
ieee transactions on magnetics
Language(s) - English
Resource type - Magazines
SCImago Journal Rank - 0.62
H-Index - 137
eISSN - 1941-0069
pISSN - 0018-9464
DOI - 10.1109/tmag.2025.3619844
Subject(s) - fields, waves and electromagnetics
Simulating electromagnetic fields across broad frequency ranges is challenging due to numerical instabilities at low frequencies. This work extends a stabilized two-step formulation of Maxwell’s equations to the time-domain. Using a Galerkin discretization in space, we apply two different time-discretization schemes that are tailored to the first- and second-order in time partial differential equations of the two-step solution procedure used here. To address the low-frequency instability, we incorporate a generalized tree-cotree gauge that removes the singularity of the curl-curl operator, ensuring robustness even in the static limit. Numerical results on academic and application-oriented 3D problems confirm stability, accuracy, and the method’s applicability to nonlinear, temperature-dependent materials.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom