Quantum Relay Channels
Author(s) -
Uzi Pereg
Publication year - 2025
Publication title -
ieee transactions on information theory
Language(s) - English
Resource type - Magazines
SCImago Journal Rank - 1.218
H-Index - 286
eISSN - 1557-9654
pISSN - 0018-9448
DOI - 10.1109/tit.2025.3613067
Subject(s) - communication, networking and broadcast technologies , signal processing and analysis
Communication over a fully quantum relay channel is considered. We establish three bounds based on different coding strategies, i.e., partial decode-forward, measure-forward, and assist-forward. Using the partial decode-forward strategy, the relay decodes part of the information, while the other part is decoded without the relay’s help. The result by Savov et al. (2012) for a classical-quantum relay channel is obtained as a special case. Based on our partial decode-forward bound, the capacity is determined for Hadamard relay channels. In the measure-forward coding scheme, the relay performs a sequence of measurements and then sends a compressed representation of the measurement outcome to the destination receiver. The measure-forward strategy can be viewed as a generalization of the classical compress-forward bound. At last, we consider quantum relay channels with orthogonal receiver components. The assist-forward bound is based on a new approach, whereby the transmitter sends the message to the relay and simultaneously generates entanglement assistance between the relay and the destination receiver. Subsequently, the relay can transmit the message to the destination receiver with rate-limited entanglement assistance.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom