z-logo
open-access-imgOpen Access
CP-OFDM Achieves the Lowest Average Ranging Sidelobe Under QAM/PSK Constellations
Author(s) -
Fan Liu,
Ying Zhang,
Yifeng Xiong,
Shuangyang Li,
Weijie Yuan,
Feifei Gao,
Shi Jin,
Giuseppe Caire
Publication year - 2025
Publication title -
ieee transactions on information theory
Language(s) - English
Resource type - Magazines
SCImago Journal Rank - 1.218
H-Index - 286
eISSN - 1557-9654
pISSN - 0018-9448
DOI - 10.1109/tit.2025.3591267
Subject(s) - communication, networking and broadcast technologies , signal processing and analysis
This paper aims to answer a fundamental question in the area of Integrated Sensing and Communications (ISAC): What is the optimal communication-centric ISAC waveform for ranging? Towards that end, we first established a generic framework to analyze the sensing performance of communication-centric ISAC waveforms built upon orthonormal signaling bases and random data symbols. Then, we evaluated their ranging performance by adopting both the periodic and aperiodic auto-correlation functions (P-ACF and A-ACF), and defined the expectation of the integrated sidelobe level (EISL) as a sensing performance metric. On top of that, we proved that among all communication waveforms with cyclic prefix (CP), the orthogonal frequency division multiplexing (OFDM) modulation is the only globally optimal waveform that achieves the lowest ranging sidelobe for quadrature amplitude modulation (QAM) and phase shift keying (PSK) constellations, in terms of both the EISL and the sidelobe level at each individual lag of the P-ACF. As a step forward, we proved that among all communication waveforms without CP, OFDM is a locally optimal waveform for QAM/PSK in the sense that it achieves a local minimum of the EISL of the A-ACF. Finally, we demonstrated by numerical results that under QAM/PSK constellations, there is no other orthogonal communication-centric waveform that achieves a lower ranging sidelobe level than that of the OFDM, in terms of both P-ACF and A-ACF cases.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom