z-logo
open-access-imgOpen Access
Coordinated Operation of Electricity, Hydrogen, and Thermal Systems in a Residential Multi-Energy Microgrid
Author(s) -
Pablo Horrillo-Quintero,
Pablo Garcia-Trivino,
Ehsan Hosseini,
Carlos Andres Garcia Vazquez,
Higinio Sanchez-Sainz,
Luis M. Fernandez-Ramirez
Publication year - 2025
Publication title -
ieee transactions on industry applications
Language(s) - English
Resource type - Magazines
SCImago Journal Rank - 1.19
H-Index - 195
eISSN - 1939-9367
pISSN - 0093-9994
DOI - 10.1109/tia.2025.3618782
Subject(s) - power, energy and industry applications , signal processing and analysis , fields, waves and electromagnetics , components, circuits, devices and systems
Multi-energy microgrids (MEMGs) represent a specific typology of microgrids that combine multiple energy carriers—including electricity, heat, cooling, and hydrogen—within a coordinated framework. Existing studies emphasize energy dispatch optimization and often neglect real-time dynamic control. This paper presents a novel fuzzy-logic control method for the coordinated operation of electricity, hydrogen, and thermal systems in a residential MEMG. A photovoltaic (PV) power plant serves as the primary renewable energy source, while thermal sources include an electric boiler and a chiller. Additionally, a gas boiler is integrated to manage the hot water circuit. A hybrid energy storage system (HESS), comprising a battery and a hydrogen system, enhances operational flexibility. The fuzzy logic-based energy management system (FL-EMS) dynamically coordinates the interaction among energy systems based on renewable energy input and the state of energy (SOE) of the HESS. The proposed method is evaluated through simulations and hardware-in-the-loop (HIL) testing using OPAL-RT4512 and dSPACE MicroLabBox. The results show that the MEMG operates autonomously, with effective storage coordination and accurate thermal regulation. A sensitivity analysis confirms the robustness and adaptability of the FL-EMS, validating its suitability for real-time MEMG control. Compared to a machine-state-based EMS, the FL-EMS reduces the integral time-weighted squared error (ITSE) for temperature control by 49.38%, operating costs by 12.78%, and energy consumption by 15.05%.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom