Multi-Platform Methane Plume Detection via Model and Domain Adaptation
Author(s) -
Vassiliki Mancoridis,
Brian Bue,
Jake H. Lee,
Andrew K. Thorpe,
Daniel Cusworth,
Alana Ayasse,
Philip G. Brodrick,
Riley Duren
Publication year - 2025
Publication title -
ieee transactions on geoscience and remote sensing
Language(s) - English
Resource type - Magazines
SCImago Journal Rank - 2.141
H-Index - 254
eISSN - 1558-0644
pISSN - 0196-2892
DOI - 10.1109/tgrs.2025.3608601
Subject(s) - geoscience , signal processing and analysis
Prioritizing methane for near-term climate action is crucial due to its significant impact on global warming. Previous work used columnwise matched filter products from the airborne AVIRIS-NG imaging spectrometer to detect methane plume sources; convolutional neural networks (CNNs) discerned anthropogenic methane plumes from false positive enhancements. However, as an increasing number of remote sensing platforms are used for methane plume detection, there is a growing need to address cross-platform alignment. In this work, we describe model- and data-driven machine learning approaches that leverage airborne observations to improve spaceborne methane plume detection, reconciling the distributional shifts inherent with performing the same task across platforms. We develop a spaceborne methane plume classifier using data from the EMIT imaging spectroscopy mission. We refine classifiers trained on airborne imagery from AVIRIS-NG campaigns using transfer learning, outperforming the standalone spaceborne model. Finally, we use CycleGAN, an unsupervised image-to-image translation technique, to align the data distributions between airborne and spaceborne contexts. Translating spaceborne EMIT data to the airborne AVIRIS-NG domain using CycleGAN and applying airborne classifiers directly yields the best plume detection results. This methodology is useful not only for data simulation, but also for direct data alignment. Though demonstrated on the task of methane plume detection, our work more broadly demonstrates a data-driven approach to align related products obtained from distinct remote sensing instruments.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom