A Tutorial on MRI Reconstruction: From Modern Methods to Clinical Implications
Author(s) -
Tolga Cukur,
Salman UH. Dar,
Valiyeh A. Nezhad,
Yohan Jun,
Tae Hyung Kim,
Shohei Fujita,
Berkin Bilgic
Publication year - 2025
Publication title -
ieee transactions on biomedical engineering
Language(s) - English
Resource type - Magazines
SCImago Journal Rank - 1.148
H-Index - 200
eISSN - 1558-2531
pISSN - 0018-9294
DOI - 10.1109/tbme.2025.3617575
Subject(s) - bioengineering , computing and processing , components, circuits, devices and systems , communication, networking and broadcast technologies
MRI is an indispensable clinical tool, offering a rich variety of tissue contrasts to support broad diagnostic and research applications. Protocols can incorporate multiple structural, functional, diffusion, spectroscopic, or relaxometry sequences to provide complementary information for differential diagnosis, and to capture multidimensional insights into tissue structure and composition. However, these capabilities come at the cost of prolonged scan times, which reduce patient throughput, increase susceptibility to motion artifacts, and may require trade-offs in image quality or diagnostic scope. Over the last two decades, advances in image reconstruction algorithms-alongside improvements in hardware and pulse sequence design-have made it possible to accelerate acquisitions while preserving diagnostic quality. Central to this progress is the ability to incorporate prior information to regularize the solutions to the reconstruction problem. In this tutorial, we overview the basics of MRI reconstruction and highlight state-of-the-art approaches, beginning with classical methods that rely on explicit hand-crafted priors, and then turning to deep learning methods that leverage a combination of learned and crafted priors to further push the performance envelope. We also explore the translational aspects and eventual clinical implications of these methods. We conclude by discussing future directions to address remaining challenges in MRI reconstruction. The tutorial is accompanied by a Python toolbox ( https://github.com/tutorial-MRI-recon/tutorial ) to demonstrate select methods discussed in the article.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom