Sampling-Based Stochastic Data-Driven Predictive Control Under Data Uncertainty
Author(s) -
Johannes Teutsch,
Sebastian Kerz,
Dirk Wollherr,
Marion Leibold
Publication year - 2025
Publication title -
ieee transactions on automatic control
Language(s) - English
Resource type - Magazines
SCImago Journal Rank - 3.436
H-Index - 294
eISSN - 1558-2523
pISSN - 0018-9286
DOI - 10.1109/tac.2025.3617610
Subject(s) - signal processing and analysis
We present a stochastic constrained output- feedback data-driven predictive control scheme for linear time-invariant systems subject to bounded additive disturbances. The approach uses data-driven predictors based on an extension of Willems' fundamental lemma and requires only a single persistently exciting input-output data trajectory. Compared to current state-of-the-art approaches, we do not rely on availability of exact disturbance data. Instead, we leverage a novel parameterization of the unknown disturbance data considering consistency with the measured data and the system class. This allows for deterministic approximation of the chance constraints in a sampling-based fashion. A robust constraint on the first predicted step enables recursive feasibility, closed-loop constraint satisfaction, and robust asymptotic stability in expectation under standard assumptions. A numerical example demonstrates the efficiency of the proposed control scheme.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom