z-logo
open-access-imgOpen Access
Mobile Edge Computing for AAV-enabled Internet of Vehicles with NOMA: Delay Optimization and Performance Analysis
Author(s) -
Dawei Wang,
Hongyan Wang,
Weichao Yang,
Yixin He,
Yi Jin,
Li Li,
Hongbo Zhao,
Xiaoyang Li
Publication year - 2025
Publication title -
ieee open journal of vehicular technology
Language(s) - English
Resource type - Magazines
eISSN - 2644-1330
DOI - 10.1109/ojvt.2025.3596251
Subject(s) - communication, networking and broadcast technologies , transportation
Autonomous aerial vehicles (AAVs) can effectively eliminate communication blind zones and establish line-of-sight links with ground vehicles by leveraging their flexible deployment capabilities. Motivated by the above, this paper employs an AAV as a mobile edge computing (MEC) server to provide task offloading services, based on which the non-orthogonal multiple access (NOMA) technology is used in AAV-enabled Internet of Vehicles (IoV). To reduce the MEC offloading delay, we propose a NOMA-enhanced MEC framework for AAV-enabled IoV. More explicitly, we formulate a total offloading delay minimization problem by optimizing the transmit power and the AAV position. To tackle the non-convex problem, we decouple it into two sub-problems: power allocation and AAV position optimization. Specifically, the power allocation is optimized via the successive convex optimization algorithm, and the AAV position is adjusted using the improved particle swarm optimization-genetic algorithm (PSO-GA). Then, we propose an iterative optimization algorithm to alternately iterate these two processes to find the optimal solution. Next, we analyze the achievable offloading probability of the NOMA-MEC scheme compared with the OMAMEC scheme and derive its asymptotic expressions under high signal-to-noise ratio (SNR) conditions. Finally, simulation results indicate that the proposed scheme outperforms existing methods in reducing total offloading delay while validating the accuracy of performance analysis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom