z-logo
open-access-imgOpen Access
Adaptive RIS Design and Optimization for Cooperative RIS-Assisted Wireless Systems
Author(s) -
Tarun Jain,
Sainath Bitragunta,
Ashutosh Bhatia
Publication year - 2025
Publication title -
ieee open journal of vehicular technology
Language(s) - English
Resource type - Magazines
eISSN - 2644-1330
DOI - 10.1109/ojvt.2025.3588543
Subject(s) - communication, networking and broadcast technologies , transportation
We propose an adaptive RIS-based cooperative transmission strategy that jointly selects one of two RIS paths and dynamically optimizes the number of active meta-atoms to maximize physical layer (PHY) secrecy capacity under a total average power constraint. Unlike existing approaches that fix the RIS size or assume identical fading on all links, our framework uses long-term statistics to probabilistically choose between two RISs (upper or lower) with arbitrary first-hop fading, and leverages instantaneous channel state information (CSI) on the selected path to solve a convex Ksizing problem via a Lagrangian multiplier approach. We derive and present the solution for optimal K, and numerically evaluate the average PHY secrecy capacity and average PHY secrecy efficiency for the proposed optimal strategy. Numerical results show that the proposed optimal $K$ strategy achieves up to 35% higher average PHY secrecy capacity and 50% improvement in average PHY secrecy efficiency compared to a fixedK benchmark strategy across moderate power thresholds. Furthermore, we present an insightful asymptotic analysis for average PHY secrecy capacity in an interesting scaling regime. Our findings demonstrate the practical benefits of adaptive RIS for cooperative PHY secure and energy-efficient beyond fifth generation (B5G) wireless systems.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom