z-logo
open-access-imgOpen Access
Learning Graph Structures with Autoregressive Graph Signal Models
Author(s) -
Kyle Donoghue,
Ashkan Ashrafi
Publication year - 2025
Publication title -
ieee open journal of signal processing
Language(s) - English
Resource type - Magazines
eISSN - 2644-1322
DOI - 10.1109/ojsp.2025.3588447
Subject(s) - signal processing and analysis
This paper presents a novel approach to graph learning, GL-AR, which leverages estimated autoregressive coefficients to recover undirected graph structures from time-series graph signals with propagation delay. GL-AR can discern graph structures where propagation between vertices is delayed, mirroring the dynamics of many real-world systems. This is achieved by utilizing the autoregressive coefficients of time-series graph signals in GL-AR's learning algorithm. Existing graph learning techniques typically minimize the smoothness of a graph signal on a recovered graph structure to learn instantaneous relationships. GL-AR extends this approach by showing that minimizing smoothness with autoregressive coefficients can additionally recover relationships with propagation delay. The efficacy of GL-AR is demonstrated through applications to both synthetic and real-world datasets. Specifically, this work introduces the Graph-Tensor Method, a novel technique for generating synthetic time-series graph signals that represent edges as transfer functions. This method, along with real-world data from the National Climatic Data Center, is used to evaluate GL-AR's performance in recovering undirected graph structures. Results indicate that GL-AR's use of autoregressive coefficients enables it to outperform state-of-the-art graph learning techniques in scenarios with nonzero propagation delays. Furthermore, GL-AR's performance is optimized by a new automated parameter selection algorithm, which eliminates the need for computationally intensive trial-and-error methods. This paper has supplementary MATLAB code available at https://github.com/kyle-donoghue/GL-AR .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom