
Realistic Urban Traffic Generator Using Decentralized Federated Learning for the SUMO Simulator
Author(s) -
Alberto Bazan-Guillen,
Carlos Beis-Penedo,
Diego Cajaraville-Aboy,
Pablo Barbecho-Bautista,
Rebeca P. Diaz-Redondo,
Luis J. de la Cruz Llopis,
Ana Fernandez-Vilas,
Monica Aguilar Igartua,
Manuel Fernandez-Veiga
Publication year - 2025
Publication title -
ieee open journal of the communications society
Language(s) - English
Resource type - Magazines
eISSN - 2644-125X
DOI - 10.1109/ojcoms.2025.3597019
Subject(s) - communication, networking and broadcast technologies
Realistic urban traffic simulation is essential for sustainable urban planning and the development of intelligent transportation systems. However, generating high-fidelity, time-varying traffic profiles that accurately reflect real-world conditions, especially in large-scale scenarios, remains a major challenge. Existing methods often suffer from limitations in accuracy, scalability, or raise privacy concerns due to centralized data processing. This work introduces DesRUTGe (Decentralized Realistic Urban Traffic Generator), a novel framework that integrates Deep Reinforcement Learning (DRL) agents with the SUMO simulator to generate realistic 24-hour traffic patterns. A key innovation of DesRUTGe is its use of Decentralized Federated Learning (DFL), wherein each traffic detector and its corresponding urban zone function as an independent learning node. These nodes train local DRL models using minimal historical data and collaboratively refine their performance by exchanging model parameters with selected peers (e.g., geographically adjacent zones), without requiring a central coordinator. Evaluated using real-world data from the city of Barcelona, DesRUTGe outperforms standard SUMO-based tools such as RouteSampler, as well as other centralized learning approaches, by delivering more accurate traffic pattern generation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom