z-logo
open-access-imgOpen Access
Hi-Drive: Hierarchical POMDP Planning for Safe Autonomous Driving in Diverse Urban Environments
Author(s) -
Xuanjin Jin,
Chendong Zeng,
Shengfa Zhu,
Chunxiao Liu,
Panpan Cai
Publication year - 2025
Publication title -
ieee robotics and automation letters
Language(s) - English
Resource type - Magazines
SCImago Journal Rank - 1.123
H-Index - 56
eISSN - 2377-3766
DOI - 10.1109/lra.2025.3619747
Subject(s) - robotics and control systems , computing and processing , components, circuits, devices and systems
Uncertainties in dynamic road environments pose significant challenges for behavior and trajectory planning in autonomous driving. This paper introduces Hi-Drive, a hierarchical planning algorithm addressing uncertainties at both behavior and trajectory levels using a hierarchical Partially Observable Markov Decision Process (POMDP) formulation. Hi-Drive employs driver models to represent uncertain behavioral intentions of other vehicles and uses their parameters to infer hidden driving styles. By treating driver models as high-level decision-making actions, our approach effectively manages the exponential complexity inherent in POMDPs. To further enhance safety and robustness, Hi-Drive integrates a trajectory optimization based on importance sampling, refining trajectories using a comprehensive analysis of critical agents. Evaluations on real-world urban driving datasets demonstrate that Hi-Drive significantly outperforms state-of-the-art planning-based and learning-based methods across diverse urban driving situations in real-world benchmarks.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom