
Congestion Mitigation Path Planning for Large-Scale Multi-Agent Navigation in Dense Environments
Author(s) -
Takuro Kato,
Keisuke Okumura,
Yoko Sasaki,
Naoya Yokomachi
Publication year - 2025
Publication title -
ieee robotics and automation letters
Language(s) - English
Resource type - Magazines
SCImago Journal Rank - 1.123
H-Index - 56
eISSN - 2377-3766
DOI - 10.1109/lra.2025.3597871
Subject(s) - robotics and control systems , computing and processing , components, circuits, devices and systems
In high-density environments where numerous autonomous agents move simultaneously in a distributed manner, streamlining global flows to mitigate local congestion is crucial to maintain overall navigation efficiency. This paper introduces a novel path-planning problem, congestion mitigation path planning (CMPP) , which embeds congestion directly into the cost function, defined by the usage of incoming edges along agents' paths. CMPP assigns a flow-based multiplicative penalty to each vertex of a sparse graph, which grows steeply where frequently-traversed paths intersect, capturing the intuition that congestion intensifies where many agents enter the same area from different directions. Minimizing the total cost yields a set of coarse-level, time-independent routes that autonomous agents can follow while applying their own local collision avoidance. We formulate the problem and develop two solvers: (i) an exact mixed-integer nonlinear programming solver for small instances, and (ii) a scalable two-layer search algorithm, A-CMTS , which quickly finds suboptimal solutions for large-scale instances and iteratively refines them toward the optimum. Empirical studies show that augmenting state-of-the-art collision-avoidance planners with CMPP significantly reduces local congestion and enhances system throughput in both discrete- and continuous-space scenarios. These results indicate that CMPP improves the performance of multi-agent systems in real-world applications such as logistics and autonomous-vehicle operations.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom