z-logo
open-access-imgOpen Access
Bayes and Biased Estimators Without Hyper-Parameter Estimation: Comparable Performance to the Empirical-Bayes-Based Regularized Estimator
Author(s) -
Yue Ju,
Bo Wahlberg,
Hakan Hjalmarsson
Publication year - 2025
Publication title -
ieee control systems letters
Language(s) - English
Resource type - Magazines
SCImago Journal Rank - 1.154
H-Index - 21
eISSN - 2475-1456
DOI - 10.1109/lcsys.2025.3571648
Subject(s) - robotics and control systems , computing and processing , components, circuits, devices and systems
Regularized system identification has become a significant complement to more classical system identification. It has been numerically shown that kernel-based regularized estimators often perform better than the maximum likelihood estimator in terms of minimizing mean squared error (MSE). However, regularized estimators often require hyper-parameter estimation. This paper focuses on ridge regression and the regularized estimator by employing the empirical Bayes hyper-parameter estimator. We utilize the excess MSE to quantify the MSE difference between the empirical-Bayes-based regularized estimator and the maximum likelihood estimator for large sample sizes. We then exploit the excess MSE expressions to develop both a family of generalized Bayes estimators and a family of closed-form biased estimators. They have the same excess MSE as the empirical-Bayes-based regularized estimator but eliminate the need for hyper-parameter estimation. Moreover, we conduct numerical simulations to show that the performance of these new estimators is comparable to the empirical-Bayes-based regularized estimator, while computationally, they are more efficient.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom