
Closed-Form Equations for Substrate Integrated Coaxial Lines and Its Application to Dual-Frequency Coupler With Wide Bandwidth and Out-of-Band Rejection
Author(s) -
Idury Satya Krishna,
Amar D. Chaudhari,
Soumava Mukherjee
Publication year - 2025
Publication title -
ieee journal of microwaves
Language(s) - English
Resource type - Magazines
eISSN - 2692-8388
DOI - 10.1109/jmw.2025.3579426
Subject(s) - fields, waves and electromagnetics
This article presents the design and fabrication of self-packaged, self-shielded substrate integrated coaxial lines (SICL). The study introduces a closed-form equation for the characteristic impedance of SICL, emphasizing the effect of the outer conductor width and substrate thickness on this parameter. The robustness of the proposed formula is confirmed through testing of four distinct SICL transmission lines, each with varying dielectric constants and substrate thicknesses. A novel dual-band SICL transmission line is developed using short-circuited planar coaxial stubs, which serves as an alternative to the conventional quarter-wavelength transmission line design. The performance of this dual-band line is analyzed across different characteristic impedances, and the range of achievable frequency ratios is determined analytically. The resulting SICL-based rat-race coupler, fabricated using standard PCB processes, demonstrates a measured fractional bandwidth of 26.69% at 10.83 GHz and 11.29% at 22.94 GHz. It achieves low amplitude and phase imbalances, with values of $\pm$ 1 dB and less than $\pm$ 4°, respectively. Owing to the filtering response provided by short circuited coaxial stubs, the third harmonic of proposed coupler is suppressed and spurious rejection better than 22 dB is achieved up to 40 GHz.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom