
Achieving N/P Doping of MoS2 Through ZnO Interface Engineering in Heterostructures for Semiconductor Devices
Author(s) -
Lijun Xu,
Guohui Zhan,
Kun Luo,
Yukun Shi,
Pengcong Mu,
Yan Liu,
Qinzhi Xu,
Jiangtao Liu,
Zhenhua Wu
Publication year - 2025
Publication title -
ieee journal of the electron devices society
Language(s) - English
Resource type - Magazines
SCImago Journal Rank - 0.69
H-Index - 31
eISSN - 2168-6734
DOI - 10.1109/jeds.2025.3594757
Subject(s) - components, circuits, devices and systems , engineered materials, dielectrics and plasmas
The aim of this study is to explore the electronic properties of the MoS2/ZnO heterostructure and their potential applications in semiconductor devices. We analyzed the impact of N/P doping on electronic properties of ZnO structures with different terminations using the Density Functional Theory-Non-Equilibrium Green’s Function (DFT-NEGF). H-passivation treatment significantly affects doping, enabling precise adjustment of interface charge distribution for improved electrical performance. Additionally, the transport properties of doped MoS2 devices have been significantly improved at different spacer lengths. Particularly under ballistic transport conditions, the current of the doped devices has increased by approximately four orders of magnitude compared to the undoped devices. These findings have important theoretical and practical implications for the design and optimization of high-performance electronic devices based on two-dimensional materials.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom