z-logo
open-access-imgOpen Access
COLIBRI Fuzzy Model: Color Linguistic-Based Representation and Interpretation
Author(s) -
Pakizar Shamoi,
Nuray Toganas,
Muragul Muratbekova,
Elnara Kadyrgali,
Adilet Yerkin,
Ayan Igali,
Malika Ziyada,
Ayana Adilova,
Aron Karatayev,
Yerdauit Torekhan
Publication year - 2025
Publication title -
ieee access
Language(s) - English
Resource type - Magazines
SCImago Journal Rank - 0.587
H-Index - 127
eISSN - 2169-3536
DOI - 10.1109/access.2025.3638244
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
Colors are omnipresent in today’s world and play a vital role in how humans perceive and interact with their surroundings. However, it is challenging for computers to imitate human color perception. This paper introduces the Human Perception-Based Fuzzy Color Model, COLIBRI (Color Linguistic-Based Representation and Interpretation), designed to bridge the gap between computational color representations and human visual perception. The proposed model uses fuzzy sets and logic to create a framework for color categorization. Using a three-phase experimental approach, the study first identifies distinguishable color stimuli for hue, saturation, and intensity through preliminary experiments, followed by a large-scale human categorization survey involving more than 1000 human subjects. The resulting data are used to extract fuzzy partitions and generate membership functions that reflect real-world perceptual uncertainty. The model incorporates a mechanism for adaptation that allows refinement based on feedback and contextual changes. Comparative evaluations demonstrate the model’s alignment with human perception compared to traditional color models, such as RGB, HSV, and LAB. To the best of our knowledge, no previous research has documented the construction of a model for color attribute specification based on a sample of this size or a comparable sample of the human population (n = 2496). Our findings are significant for fields such as design, artificial intelligence, marketing, and human-computer interaction, where perceptually relevant color representation is critical.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom