z-logo
open-access-imgOpen Access
Data-Driven Charging Strategies to Mitigate EV Battery Degradation
Author(s) -
Salvador Carvalhosa,
Jose Rui Ferreira,
Rui Esteves Araujo
Publication year - 2025
Publication title -
ieee access
Language(s) - English
Resource type - Magazines
SCImago Journal Rank - 0.587
H-Index - 127
eISSN - 2169-3536
DOI - 10.1109/access.2025.3638156
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
Battery degradation remains a major challenge in electric vehicle (EV) adoption, directly affecting long-term performance, cost, and user satisfaction. This paper proposes a data-driven charging strategy that reduces battery wear while meeting the user’s daily range needs. By integrating manufacturer guidelines, battery aging models, and thermal dynamics, the proposed optimization algorithm dynamically adjusts the charging current and timing to minimize stressors, such as high temperatures and prolonged high state of charge (SoC). The methodology is responsive to user inputs such as departure time and required driving range, enabling personalized charging behavior. Simulation results show that this approach can reduce battery degradation by up to 2.7% over a 30-day period compared to conventional charging habits, without compromising usability. The framework is designed for integration into Battery Management Systems (BMS), with applications for both private EV users and fleet operators. We address EV battery aging driven by high core temperature and prolonged high state of charge (SoC) during overnight/home charging. Given a user-specified departure time and required driving range, we schedule charging power over time to minimize predicted degradation exposure while still meeting the range requirement. The scheduler optimizes charging timing/current under SoC dynamics, thermal constraints, and charger/ BMS limits.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom