z-logo
open-access-imgOpen Access
TransInferSim: Towards Fast and Accurate Evaluation of Embedded Hardware Accelerators for Transformer Networks
Author(s) -
Jan Klhufek,
Alberto Marchisio,
Vojtech Mrazek,
Lukas Sekanina,
Muhammad Shafique
Publication year - 2025
Publication title -
ieee access
Language(s) - English
Resource type - Magazines
SCImago Journal Rank - 0.587
H-Index - 127
eISSN - 2169-3536
DOI - 10.1109/access.2025.3621062
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
Transformers are neural network models that have gained popularity in various advanced AI systems including embedded/Edge-AI. Due to their architecture, hardware accelerators can leverage massive parallelism, especially when processing attention head operations. While accelerators for Transformers are being discussed in the literature, efficient scheduling of cache operations and detailed modeling of inference dynamics has not yet been addressed comprehensively. In this paper, we introduce TransInferSim, a novel tool that combines cycle-accurate simulation for performance estimation (including latency, memory usage, memory access counts, and computation counts) with a discrete-event-based scheduler that determines the execution order of compute and memory operations. By combining this tool with the Accelergy tool, the simulator enables accurate estimation of energy consumption and on-chip area, leveraging pre-characterized hardware parameters. The proposed tool allows for the accurate determination of cache misses at different levels and with different victim selection configurations. It supports different memory hierarchies and offers several strategies for scheduling operations on compute units. In addition, TransInferSim can extract the full execution plan generated during simulation, enabling its further use for behavioral Register Transfer Level validation or for deployment in real hardware implementations. This makes the tool applicable not only for high-level design space exploration, but also as a software front-end for hardware execution mapping. Finally, we can optimize the architecture for a particular network, as demonstrated through multiobjective design space exploration to adjust the size of processing arrays. In our experiments, the introduction of an on-chip memory hierarchy improved the inference speed by ~3.5× and reduced energy by ~1.9× for the RoBERTaBase Transformer model, while design space exploration achieved up to 10× latency reduction and 6× area savings for the ViTTiny vision Transformer. The tool is available online at.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom