A Physics-Informed Context-Aware Approach for Anomaly Detection in Tele-driving Operations Under False Data Injection Attacks
Author(s) -
Subhadip Ghosh,
Aydin Zaboli,
Junho Hong,
Jaerock Kwon
Publication year - 2025
Publication title -
ieee access
Language(s) - English
Resource type - Magazines
SCImago Journal Rank - 0.587
H-Index - 127
eISSN - 2169-3536
DOI - 10.1109/access.2025.3618211
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
Tele-operated driving (ToD) systems are special types of cyber-physical systems (CPSs) where the operator remotely controls the steering, acceleration, and braking actions of the vehicle. Malicious actors may inject false data in communication channels to manipulate the tele-operator’s driving commands to cause harm. Hence, protection of this communication is necessary for the safe operation of the target vehicle. However, according to the National Institute of Standards and Technology (NIST) cybersecurity framework, protection merely is not enough and the detection of an attack is necessary. Moreover, UN R155 mandates that security incidents across vehicle fleets be detected and logged. Thus, cyber-physical threats of ToD are modeled with an attack-centric approach in this paper. Then, an attack model with false data injection (FDI) on steering control commands is created from real vehicle data. The risk of this attack model is assessed for a last-mile delivery (LMD) application. Finally, a physics-informed context-aware anomaly detection system (PCADS) is proposed to detect such false injection attacks, and preliminary experimental results are presented to validate the model.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom