z-logo
open-access-imgOpen Access
Machine Learning for Fluid Thermodynamics: State of The Art and Open Challenges
Author(s) -
Federico Succetti,
Massimo Panella,
Paolo Giannitrapani,
Jean-Christophe Rigo,
Stefania Colonnese
Publication year - 2025
Publication title -
ieee access
Language(s) - English
Resource type - Magazines
SCImago Journal Rank - 0.587
H-Index - 127
eISSN - 2169-3536
DOI - 10.1109/access.2025.3615454
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
This paper presents a critical survey on adopting machine learning in solving complex real fluid thermodynamics problems. After reviewing the primary computational machine learning frameworks employed in thermodynamic modelling, we have analysed current research with a particular emphasis on properly estimating gas and liquid properties, vapour-liquid equilibrium, and supercritical fluids, focusing on pure gases. While ML offers a powerful paradigm for augmenting or even replacing traditional methods, its application faces significant open challenges. Key issues include the persistent trade-off between model accuracy and computational efficiency, the difficulty in capturing highly non-linear behaviour, especially near critical points or under extreme conditions, and the pervasive problem of data scarcity.We conclude the paper by introducing the main datasets available for thermodynamic property computation, such as the results of the GERG2008 project, and others relevant to turbomachinery applications. This survey provides a unified perspective on machine learning architectures used in thermodynamics and identifies open challenges and potential future advancements for enhancing predictive accuracy and efficiency while reducing execution time.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom