z-logo
open-access-imgOpen Access
A Soft Error Self-Resilience Radiation-Hardened 14T SRAM for Aerospace Applications
Author(s) -
Guguloth Anjaneyulu,
Asisa Kumar Panigrahy,
Mukku Pavan Kumar,
Shams Ul Haq,
Abdolreza Darabi,
Erfan Abbasian,
Priyanka Sharma,
M Durga Prakash
Publication year - 2025
Publication title -
ieee access
Language(s) - English
Resource type - Magazines
SCImago Journal Rank - 0.587
H-Index - 127
eISSN - 2169-3536
DOI - 10.1109/access.2025.3598000
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
Various charged particles in space threaten memory circuit integrity and dependability, including photons, alpha particles, and high-energy ions outside the Low Earth Orbit region. These particles particularly affect conventional 6T SRAM by disrupting stored bits, leading researchers to explore radiation-hardened SRAM chips and the addition of extra nodes to memory cells to recover lost data. A novel self resilience radiation-hardened 14T (SRRH-14T) SRAM cell with redundant nodes is presented in this work to solve the soft error problem. The suggested SRRH-14T memory performance compared to well-known radiation-hardened cells, such as 6T-SRAM, Quatro-10T, SEA-14T, RH-14T, QCCS-12T, and RRS-14T. The proposed SRRH-14T memory cell applies to a minimal sensitive node layout area separation to protect against multiple node interruptions. Additionally, the proposed SRRH-14T demonstrates performance enhancements of 1.22x, 1.03x, 1.09x, 1.06x, and 1.02x relative to 6T-SRAM, Quatro-10T, SEA-14T, RH-14T, and RRS-14T, respectively.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom