z-logo
open-access-imgOpen Access
Noisier2Inverse: Self-Supervised Learning for Image Reconstruction with Correlated Noise
Author(s) -
N. Gruber,
J. Schwab,
M. Haltmeier,
A. Biguri,
C. Dlaska,
G. Hwang
Publication year - 2025
Publication title -
ieee access
Language(s) - English
Resource type - Magazines
SCImago Journal Rank - 0.587
H-Index - 127
eISSN - 2169-3536
DOI - 10.1109/access.2025.3596557
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
We propose Noisier2Inverse, a correction-free, self-supervised deep learning method for general inverse problems. Our approach learns a reconstruction function without requiring ground truth data and is applicable in settings where measurement noise is statistically correlated. This includes applications such as computed tomography, where detector imperfections and photon scattering induce structured noise, as well as microscopy and seismic imaging, where physical interactions during acquisition lead to noise dependencies. Like Noisier2Noise, our method relies on generating noisier inputs to guide training via a network operating in image space. However, in contrast to Noisier2Noise, the loss function in Noisier2Inverse is defined in the measurement space and targets the recovery of an extrapolated image rather than the original noisy one. This design avoids the need for an explicit extrapolation step during inference, which would otherwise be affected by the ill-posedness of the inverse problem. We provide numerical evidence that Noisier2Inverse outperforms prior self-supervised methods designed to handle correlated noise. This indicates that Noisier2Inverse fills a gap in current self-supervised image reconstruction methods for correlated noise.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom