
OmniOcc: Cylindrical Voxel-Based Semantic Occupancy Prediction for Omnidirectional Vision Systems
Author(s) -
Chaofan Wu,
Jiaheng Li,
Jinghao Cao,
Ming Li,
Sidan Du,
Yang Li
Publication year - 2025
Publication title -
ieee access
Language(s) - English
Resource type - Magazines
SCImago Journal Rank - 0.587
H-Index - 127
eISSN - 2169-3536
DOI - 10.1109/access.2025.3595898
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
Accurate 3D perception is essential for autonomous driving. Traditional methods often struggle with geometric ambiguity due to a lack of geometric prior. To address these challenges, we use omnidirectional depth estimation to introduce geometric prior. Based on the depth information, we propose a Sketch-Coloring framework OmniOcc. Additionally, our approach introduces a cylindrical voxel representation based on polar coordinate to better align with the radial nature of panoramic camera views. To address the lack of fisheye camera dataset in autonomous driving tasks, we also build a virtual scene dataset with six fisheye cameras. Experimental results demonstrate that our Sketch-Coloring network significantly enhances 3D perception performance.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom