z-logo
open-access-imgOpen Access
Octascope: a lightweight pre-trained model for optical coherence tomography
Author(s) -
Haoyang Cui,
Chen Wang,
Paul Calle,
Yunlong Liu,
Qinghao Zhang,
Sinaro Ly,
Justin Reynolds,
Feng Yan,
Ke Zhang,
Ronghao Liu,
Junyuan Liu,
Kar-Ming Fung,
Zhongxin Yu,
Ajay Jain,
Qinggong Tang,
Chongle Pan
Publication year - 2025
Publication title -
ieee access
Language(s) - English
Resource type - Magazines
SCImago Journal Rank - 0.587
H-Index - 127
eISSN - 2169-3536
DOI - 10.1109/access.2025.3595838
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
Optical coherence tomography (OCT) imaging enables high resolution visualization of sub-surface tissue microstructures. However, OCT image analysis using deep learning is hampered by limited diverse training data to meet performance requirements and high inference latency for real-time applications. To address these challenges, we developed Octascope, a lightweight domain-specific convolutional neural network (CNN) - based model designed for OCT image analysis. Octascope was pre-trained using a curriculum learning approach, which involves sequential training, first on natural images (ImageNet), then on OCT images from retinal, abdominal, and renal tissues, to progressively acquire transferable knowledge. This multi-domain pre-training enables Octascope to generalize across varied tissue types. In two downstream tasks, Octascope demonstrated notable improvements in predictive accuracy compared to alternative approaches. In the epidural tissue detection task, our method surpassed single-task learning with fine-tuning by 9.13% and OCT-specific transfer learning by 5.95% in accuracy. Octascope outperformed VGG16 and ResNet50 by 5.36% and 6.66% in a retinal diagnosis task, respectively. In comparison to a Transformer-based OCT foundation model - RETFound, Octascope delivered 2 to 4.4 times faster inference speed with slightly better predictive accuracies in both downstream tasks. Octascope represented a significant advancement for OCT image analysis by providing an effective balance between computational efficiency and diagnostic accuracy for real-time clinical applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom