z-logo
open-access-imgOpen Access
Combining Model-based and Data-driven Observer Designs for Sideslip Angle Estimation
Author(s) -
Martin Repka,
Alexander L. Gratzer,
Jan Fojtasek,
Tomas Straka,
Petr Portes,
Alexander Schirrer
Publication year - 2025
Publication title -
ieee access
Language(s) - English
Resource type - Magazines
SCImago Journal Rank - 0.587
H-Index - 127
eISSN - 2169-3536
DOI - 10.1109/access.2025.3595282
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
The vehicle side slip angle represents a key indicator of dynamic stability. Elevated values of the side slip angle may indicate a loss of stability or undesired vehicle behaviors such as understeering or oversteering. With the increased use of advanced driver assistance systems (ADAS), the need for accurate estimation of the side slip angle has become increasingly critical. This measure in general needs to be indirectly measured or estimated, with latter often representing a more cost-effective and more reliable approach. This is usually done by simple observer design, e.g., Kalman filter, which requires a well-parameterized system dynamics model. In this work we exploit Machine Learning techniques in combination with a budget hardware inertial measurement unit to estimate the sideslip angle. This is done independently of the actual vehicle configuration, i.e., vehicle load and tires used. We model the system dynamics with a traditional Luenberger Observer, Long-short-term memory, Gated recurrent unit neural networks and their combination and investigate possible performance increases when incorporating well-known physical relations. The results demonstrated that a well-designed combination of model-based and data-driven approaches can achieve high estimation accuracy even without the need for large datasets, which are typically required when employing purely data-driven methods. The performance of the proposed sideslip angle estimator under different driving conditions and tire configurations is validated with real world measurement data.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom