z-logo
open-access-imgOpen Access
Data-Driven Vehicle Dynamics: Leveraging SINDy for Optimization-Based Vehicular Motion Planning
Author(s) -
Daniel Weihmayr,
Christian Birkner,
Hormoz Marzbani,
Reza Nakhaie Jazar
Publication year - 2025
Publication title -
ieee access
Language(s) - English
Resource type - Magazines
SCImago Journal Rank - 0.587
H-Index - 127
eISSN - 2169-3536
DOI - 10.1109/access.2025.3594892
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
Motion planning remains a crucial challenge for the widespread adoption of autonomous vehicles. This paper presents a novel approach that integrates an empirical plant model within an optimization-based motion planning architecture. The model prioritizes performance and efficiency while maintaining interpretability. We introduce a methodology that utilizes a data-driven approach to derive an interpretable description of the evolution of vehicle states over time using sparse regression. This method allows effective learning from limited datasets, eliminating the need for extensive and expensive data collection. Our approach addresses the trade-off between performance and accuracy, enabling adaptation to diverse driving scenarios. We affirm the efficacy of our methodology via an extensive analysis, evaluating the independent prediction performance across diverse metrics. Additionally, we examine the overall tracking performance when incorporated into an optimization-based framework. Finally, we present a comparative analysis and discuss the subsequent impact on overall motion planning and decision-making in relation to a state-of-the-art single-track model.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom