
Performance Enhancement of Dual-Input Frequency-Periodic Load Modulated Power Amplifier at 1-5.7-GHz Bandwidth with Co-Designed Biasing Network
Author(s) -
Takuma Torii,
Yuji Komatsuzaki,
Shintaro Shinjo,
Ryo Ishikawa
Publication year - 2025
Publication title -
ieee access
Language(s) - English
Resource type - Magazines
SCImago Journal Rank - 0.587
H-Index - 127
eISSN - 2169-3536
DOI - 10.1109/access.2025.3592238
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
This study proposes a novel dual input power amplifier (PA) with a frequency-periodic load modulated output matching network supported by a broadband biasing network. The output matching network consists of two transmission lines which enable the dual-input PA to operate in Doherty or outphasing modes depending on the frequency. The proposed broadband biasing network simply consists of a short stub circuit that cooperates with the output matching network. The biasing network not only provides a bias to PA, but also improves the bandwidth in the back-off operation over the broadband characteristic of 145%. The two independent input signals are utilized to optimize the operation of Doherty and outphasing mode. The dual-input PA is implemented using a 0.15 μm GaN HEMT process. The fabricated PA shows a saturated output power of 35.2 dBm to 38.1 dBm with a power added efficiency (PAE) of 36.6% to 62% for the broadband 1 GHz to 5.7 GHz. The fabricated PA demonstrated an averaged output power of 27.7 dBm to 31.8 dBm, a PAE of 35% to 56.2% and an adjacent channel power Ratio (ACPR) of -41 to -55 dBc.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom