z-logo
open-access-imgOpen Access
Robust Prediction of Wildfire Spread in Australia
Author(s) -
Michael Palk,
Katharina Knappmann,
Stefan Voss,
Raka Jovanovic
Publication year - 2025
Publication title -
ieee access
Language(s) - English
Resource type - Magazines
SCImago Journal Rank - 0.587
H-Index - 127
eISSN - 2169-3536
DOI - 10.1109/access.2025.3592124
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
Wildfires can have devastating effects on urban infrastructure and natural ecosystems, making wildfire management an important, but yet complex and difficult task. The systematic collection of data, increased computing power, and the development of physical models made it possible to get an understanding of the dynamics of wildfire spread. As exact computational simulations of wildfires are not feasible yet, several subtasks such as the estimation of the spread rate were analyzed with various methods in the literature. In this paper, different types of predictive models are evaluated to forecast the spread of wildfires on a daily and weekly basis in a comparative study. These models are tested on real-world data of wildfires from the seven Australian regions New South Wales, Northern Territory, Queensland, South Australia, Tasmania, Victoria, and Western Australia from 2005 to 2020, including weather, vegetation, and land cover class data, in a univariate and multivariate setting. Furthermore, relevant features are identified and discussed which can have an important influence on wildfire spread. We find that robust models, which are less sensitive to outliers, capture the dynamics of wildfire spread most accurately.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom