
A Comparative Study for Localization of Forgery Regions in Images
Author(s) -
Mustafa Ozden,
Canberk Sahin
Publication year - 2025
Publication title -
ieee access
Language(s) - English
Resource type - Magazines
SCImago Journal Rank - 0.587
H-Index - 127
eISSN - 2169-3536
DOI - 10.1109/access.2025.3591571
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
As computer technologies and image processing software have advanced, it has become progressively easier to produce simple fake or forged images by altering digital images without leaving any discernible trace. There is a significant need to detect manipulated regions in images in crucial fields such as politics, law, and forensic medicine. In this study, we propose a method that combines the traditional techniques, such as Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT), with the advantages of deep learning methods to detect manipulated regions in forged images. The proposed method involves designing an architecture where DWT and DCT are used in parallel with DenseNet based Convolutional Neural Network (CNN). To evaluate the effectiveness of this method, we implemented three alternative approaches: one that uses only DCT and CNN, another that uses only DWT and CNN, and a third that employs only CNN without either transformation. In total, four different methods were tested on eight datasets, and their performance was compared using metrics such as accuracy, precision, recall, dice similarity coefficient, and F1 score. The results from these comparisons clearly indicate the effectiveness and high classification accuracy of the proposed method. By leveraging the combined strengths of traditional image processing techniques and advanced deep learning algorithms, the proposed method demonstrates superior capability in detecting manipulated regions in forged images, thus offering a robust solution for applications in forensic field.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom