z-logo
open-access-imgOpen Access
Optimizing Hyperparameters in Meta-learning for Enhanced Image Classification
Author(s) -
Amala Mary Vincent,
P. Jidesh,
A.A. Bini
Publication year - 2025
Publication title -
ieee access
Language(s) - English
Resource type - Magazines
SCImago Journal Rank - 0.587
H-Index - 127
eISSN - 2169-3536
DOI - 10.1109/access.2025.3591142
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
This paper investigates the significance of hyperparameter optimization in meta-learning for image classification tasks. Despite advancements in deep learning, real-time image classification applications often suffer from data inadequacy. Few-shot learning addresses this challenge by enabling learning from limited samples. Meta-learning, a prominent tool for few-shot learning, learns across multiple classification tasks. We explore different types of meta-learners, with a particular focus on metric-based models. We analyze the potential of hyperparameter optimization techniques, specifically Bayesian optimization and its variants, to enhance the performance of these models. Experimental results on the Omniglot and ImageNet datasets demonstrate that incorporating Bayesian optimization, particularly its evolutionary strategy variant, into meta-learning frameworks leads to improved accuracy compared to settings without hyperparameter optimization. Here, we show that by optimizing hyperparameters for individual tasks rather than using a uniform setting, we achieve notable gains in model performance, underscoring the importance of tailored hyperparameter configurations in meta-learning.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom