z-logo
open-access-imgOpen Access
A TD3-Based Reinforcement Learning Algorithm with Curriculum Learning for Adaptive Yaw Stability Control in All-Wheel-Drive Electric Vehicles
Author(s) -
Reza Jafari,
Pouria Sarhadi,
Amin Paykani,
Shady S. Refaat,
Pedram Asef
Publication year - 2025
Publication title -
ieee access
Language(s) - English
Resource type - Magazines
SCImago Journal Rank - 0.587
H-Index - 127
eISSN - 2169-3536
DOI - 10.1109/access.2025.3587938
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
A novel artificial intelligence-based approach for the direct yaw control (DYC) of an all-wheel drive (AWD) electric vehicle (EV) is proposed in this paper. To improve adaptability and ability to handle nonlinearities via continuous learning, the proposed algorithm is built upon a twin delayed deep deterministic policy gradient (TD3) reinforcement learning (RL) algorithm for the optimal torque distribution across four wheels of the vehicle. The proposed model-free torque vectoring algorithm performs based on the interaction of an agent with an environment to learn the optimal policy in a reward-driven manner and obtain the ability to dynamically adapt to varying conditions, such as different roads and vehicle speeds. Unlike conventional control methods that rely on precise system modeling and may struggle to adapt under varying conditions, no model of the vehicle is required in the proposed method. This work proposes a model-free RL-based controller with curriculum learning to train the strategy, where the model learns simpler tasks first, progressively increasing difficulty to enhance stability and convergence. A detailed reward function and well-structured actor-critic networks are devised, and the proposed algorithm is compared with a conventional model-based linear quadratic regulator (LQR) approach. A nonlinear model with 7 degrees of freedom is used to model the dynamic behavior of the vehicle in MATLAB/Simulink, and the results are further verified through the implementation of IPG CarMaker under realistic driving scenarios. The performance of the proposed algorithm is studied across different maneuvers, demonstrating reduced yaw rate error and sideslip angle, resulting in enhanced dynamic stability.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom