z-logo
open-access-imgOpen Access
Bio-inspired fine-tuning for selective transfer learning in image classification
Author(s) -
Ana Davila,
Jacinto Colan,
Yasuhisa Hasegawa
Publication year - 2025
Publication title -
ieee access
Language(s) - English
Resource type - Magazines
SCImago Journal Rank - 0.587
H-Index - 127
eISSN - 2169-3536
DOI - 10.1109/access.2025.3587524
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
Deep learning has significantly advanced image analysis across diverse domains but often depends on large, annotated datasets for success. Transfer learning addresses this challenge by utilizing pre-trained models to tackle new tasks with limited labeled data. However, discrepancies between source and target domains can hinder effective transfer learning. We introduce BioTune, a novel adaptive fine-tuning technique utilizing evolutionary optimization. BioTune enhances transfer learning by optimally choosing which layers to freeze and adjusting learning rates for unfrozen layers. Through extensive evaluation on nine image classification datasets, spanning natural and specialized domains, BioTune demonstrates superior accuracy and efficiency over state-of-the-art fine-tuning methods, including AutoRGN and LoRA, highlighting its adaptability to various data characteristics and distribution changes. Additionally, BioTune consistently achieves top performance across four different CNN architectures, underscoring its flexibility. Ablation studies provide valuable insights into the impact of BioTune’s key components on overall performance.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom