z-logo
open-access-imgOpen Access
Development of Robust CNN Architecture for Grading and Classification of Renal Cell Carcinoma Histology Images
Author(s) -
Amit Kumar Chanchal,
Shyam Lal,
Shilpa Suresh
Publication year - 2025
Publication title -
ieee access
Language(s) - English
Resource type - Magazines
SCImago Journal Rank - 0.587
H-Index - 127
eISSN - 2169-3536
DOI - 10.1109/access.2025.3586935
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
Kidney cancer is a commonly diagnosed cancer disease in recent years, and Renal Cell Carcinoma (RCC) is the most common kidney cancer responsible for 80% to 85% of all renal tumors. Diagnosis of kidney cancer needs manual examination and analysis of histopathology images of the affected tissue. This process is time-consuming, prone to human error, and highly depends on the expertise of a pathologist. Early detection and grading of kidney cancer tissues enable doctors and practitioners to decide the further course of treatment. Therefore, quick and precise analysis of kidney cancer tissue images is extremely important for proper diagnosis. Recently, deep learning algorithms have proved to be very efficient and accurate in histopathology image analysis. In this paper, we propose a computationally efficient deep-learning architecture based on convolutional neural networks (CNNs) to automate the grading and classification task for kidney cancer tissue. The proposed Robust CNN (RoCNN) architecture is capable of learning features at varying convolutional filter sizes because of the inception modules employed in it. Squeeze and Extract (SE) blocks are used to remove unnecessary contributions from noisy channels and improve model accuracy. Concatenating samples from three different parts of architecture allows for the encompassing of varied features, further improving grading and classification accuracy. To demonstrate that the proposed model is generalized and independent of the dataset, it has experimented on two well-known datasets, the KMC kidney dataset of five different grades and the TCGA dataset of four classes. Compared to the best-performing state-of-the-art model the accuracy of RoCNN shows a significant improvement of about 4.22% and 3.01% for both datasets respectively.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom