
Comparative Analysis of Virtual Impedance Control Techniques for Improved Stability in DC Microgrids
Author(s) -
Beatriz Cristina Moura,
Pedro Jose dos Santos Neto,
Danillo Borges Rodrigues,
Erico Chagas Guimaraes,
Luiz Carlos Gomes Freitas,
Joao Pedro Carvalho Silveira,
Gustavo Brito De Lima
Publication year - 2025
Publication title -
ieee access
Language(s) - English
Resource type - Magazines
SCImago Journal Rank - 0.587
H-Index - 127
eISSN - 2169-3536
DOI - 10.1109/access.2025.3576476
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
DC microgrids (DCMGs) have been extensively studied using various control techniques, with droop control and its variants being the most widely adopted. Virtual impedance control (VIC), a technique commonly used in AC microgrids, can be adapted for DCMGs. VIC employs virtual resistance as the droop constant and incorporates a dynamic element, such as a virtual inductor, to enhance microgrid stability. This study compares four approaches to implementing VIC to determine the most effective method for reducing voltage oscillations during transient conditions, which enhances overall DCMG stability. In this paper, the analyzed DCMG consists of two units of energy storage system (ESS), electronic loads, and a renewable energy source (RES), each connected via a dedicated power electronic converter. Parametric analyses are conducted to define the VIC parameter range, and a stability analysis is performed to evaluate the different methods of implementation. The techniques under analysis are tested using a controller hardware-in-the-loop (C-HIL). The results establish the operating range for each VIC strategy, the stability limitations, and identifying the control approach that achieves optimal damping performance and stability in the studied microgrid.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom