
Aerial Dockable Multirotor UAVs: Design, Control and Flight Time Extension through In-flight Battery Replacement
Author(s) -
Yeongin Song,
Hyunmin Kim,
Jeonghyun Byun,
Keun Park,
Murim Kim,
Seung Jae Lee
Publication year - 2025
Publication title -
ieee access
Language(s) - English
Resource type - Magazines
SCImago Journal Rank - 0.587
H-Index - 127
eISSN - 2169-3536
DOI - 10.1109/access.2025.3574452
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
This paper presents the development and evaluation of the AirDock system, a novel aerial docking and in-flight battery exchange solution designed to extend the operational flight time of multirotor unmanned aerial vehicles (mUAVs). The proposed system enables seamless mid-flight battery replacement through an aerial docking mechanism and a rail-Car-based battery transfer and retrieval system. The AirDock platform utilizes a fully actuated multirotor design, allowing independent control of six degrees of freedom (DoF) motion to maintain a constant attitude during battery exchange operations, facilitating easy docking. In this research, a generalized control allocation algorithm is introduced to manage dynamic shifts in the center of mass (CoM) during inter-modular battery transportation, ensuring safe flight control and mitigating thruster overloading: a critical factor in avoiding flight failure. Both simulations and real-world experiments validate the system’s effectiveness, demonstrating stable aerial docking, reliable in-flight battery exchange performance, and extended flight durations for mission modules. These findings highlight the AirDock system’s potential to overcome the energy limitations of battery-powered UAVs, extending missions across various applications.