z-logo
open-access-imgOpen Access
Adaptive Optimizable Gaussian Process Regression Linear Least Squares Regression Filtering Method for SEM Images
Author(s) -
Dominic Chee Yong Ong,
Iksan Bukhori,
Kok Swee Sim,
Kok Beng Gan
Publication year - 2025
Publication title -
ieee access
Language(s) - English
Resource type - Magazines
SCImago Journal Rank - 0.587
H-Index - 127
eISSN - 2169-3536
DOI - 10.1109/access.2025.3573389
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
Scanning Electron Microscopy (SEM) images often suffer from noise contamination, which degrades image quality and affects further analysis. This research presents a complete approach to estimate their Signal-to-Noise Ratio (SNR) and noise variance (NV), and enhance image quality using NV-guided Wiener filter. The main idea of this study is to use a good SNR estimation technique and infuse a machine learning model to estimate NV of the SEM image, which then guides the wiener filter to remove the noise, providing a more robust and accurate SEM image filtering pipeline. First, we investigate five different SNR estimation techniques, namely Nearest Neighbourhood (NN) method, First-Order Linear Interpolation (FOL) method, Nearest Neighbourhood with First-Order Linear Interpolation (NN+FOL) method, Non-Linear Least Squares Regression (NLLSR) method, and Linear Least Squares Regression (LSR) method. It is shown that LSR method to perform better than the rest. Then, Support Vector Machines (SVM) and Gaussian Process Regression (GPR) are tested by pairing it with LSR. In this test, the Optimizable GPR model shows the highest accuracy and it stands as the most effective solution for NV estimation. Combining these results lead to the proposed Adaptive Optimizable Gaussian Process Regression Linear Least Squares Regression (AO-GPRLLSR) Filtering pipeline. The AO-GPRLLSR method generated an estimated noise variance which served as input to NV-guided Wiener filter for improving the quality of SEM images. The proposed method is shown to achieve notable success in estimating SNR and NV of SEM images and leads to lower Mean Squared Error (MSE) after the filtering process.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Empowering knowledge with every search

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom