z-logo
open-access-imgOpen Access
Comprehensive Design, Modeling and Analysis of Grid-Forming Type IV Wind Turbine Generators using State-Space Methods
Author(s) -
Harith E. Udawatte,
Mohammad H. Ravanji,
Behrooz Bahrani
Publication year - 2025
Publication title -
ieee access
Language(s) - English
Resource type - Magazines
SCImago Journal Rank - 0.587
H-Index - 127
eISSN - 2169-3536
DOI - 10.1109/access.2025.3572885
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
Grid-forming (GFM) control has emerged as a promising solution to the challenges posed by the increasing reliance on inverter-based resources (IBRs). However, unlike in a battery-based IBR, the implementation of GFM in wind turbine generators (WTGs) introduces challenges due to multiple machine-side converter (MSC) and grid-side converter (GSC) interactions. In this work, a GFM-WTG control structure is adopted in which the MSC primarily regulates the DC-link voltage, while the GSC emulates grid-forming behavior using virtual synchronous generator principles. Accordingly, this paper presents a practical control implementation scheme and a systematic small-signal modeling framework for GFM WTGs using the component connection method, enabling a unified state-space representation that captures key electromechanical, aerodynamic and control interactions inside the GFM-WTG system. The proposed model is validated through electromagnetic transient simulations, and eigenvalue and participation factor analyses reveal strong MSC-GSC inter-dependencies. Sensitivity analysis further confirms model accuracy across varying operating conditions. Additionally, a reduced-order model is derived to balance computational efficiency with dynamic fidelity. The findings provide a robust foundation for stability analysis and control tuning of GFM WTGs, supporting their reliable integration into future power grids.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here