
Electric Bus Charging Schedules Relying on Real Data-Driven Targets Based on Hierarchical Deep Reinforcement Learning
Author(s) -
Jiaju Qi,
Lei Lei,
Thorsteinn Jonsson,
Lajos Hanzo
Publication year - 2025
Publication title -
ieee access
Language(s) - English
Resource type - Magazines
SCImago Journal Rank - 0.587
H-Index - 127
eISSN - 2169-3536
DOI - 10.1109/access.2025.3571211
Subject(s) - aerospace , bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , engineering profession , fields, waves and electromagnetics , general topics for engineers , geoscience , nuclear engineering , photonics and electrooptics , power, energy and industry applications , robotics and control systems , signal processing and analysis , transportation
The charging scheduling problem of Electric Buses (EBs) is investigated based on Deep Reinforcement Learning (DRL). A Markov Decision Process (MDP) is conceived, where the time horizon includes multiple charging and operating periods in a day, while each period is further divided into multiple time steps. To overcome the challenge of long-range multi-phase planning with sparse reward, we conceive Hierarchical DRL (HDRL) for decoupling the original MDP into a high-level Semi-MDP (SMDP) and multiple low-level MDPs. The Hierarchical Double Deep Q-Network (HDDQN)-Hindsight Experience Replay (HER) algorithm is proposed for simultaneously solving the decision problems arising at different temporal resolutions. As a result, the high-level agent learns an effective policy for prescribing the charging targets for every charging period, while the low-level agent learns an optimal policy for setting the charging power of every time step within a single charging period, with the aim of minimizing the charging costs while meeting the charging target. It is proved that the flat policy constructed by superimposing the optimal high-level policy and the optimal low-level policy performs as well as the optimal policy of the original MDP. Since jointly learning both levels of policies is challenging due to the non-stationarity of the high-level agent and the sampling inefficiency of the low-level agent, we divide the joint learning process into two phases and exploit our new HER algorithm to manipulate the experience replay buffers for both levels of agents. Numerical experiments are performed with the aid of real-world data to evaluate the performance of the proposed algorithm.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom