Premium
3D‐printed jars for ball‐milling experiments monitored in situ by X‐ray powder diffraction
Author(s) -
Tumanov Nikolay,
Ban Voraksmy,
Poulain Agnieszka,
Filinchuk Yaroslav
Publication year - 2017
Publication title -
journal of applied crystallography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.429
H-Index - 162
ISSN - 1600-5767
DOI - 10.1107/s1600576717006744
Subject(s) - materials science , ball mill , mechanochemistry , ball (mathematics) , composite material , diffraction , nanotechnology , optics , physics , mathematics , mathematical analysis
Mechanochemistry is flourishing in materials science, but a characterization of the related processes is difficult to achieve. Recently, the use of plastic jars in shaker mills has enabled in situ X‐ray powder diffraction studies at high‐energy beamlines. This paper describes an easy way to design and manufacture these jars by three‐dimensional (3D) printing. A modified wall thickness and the use of a thin‐walled sampling groove and a two‐chamber design, where the milling and diffraction take place in two communicating volumes, allow for a reduced background/absorption and higher angular resolution, with the prospect for use at lower‐energy beamlines. 3D‐printed polylactic acid jars show good mechanical strength and they are also more resistant to solvents than jars made of polymethyl methacrylate. The source files for printing the jars are available as supporting information.