Premium
Using a non‐monochromatic microbeam for serial snapshot crystallography
Author(s) -
Dejoie Catherine,
McCusker Lynne B.,
Baerlocher Christian,
Abela Rafael,
Patterson Bruce D.,
Kunz Martin,
Tamura Nobumichi
Publication year - 2013
Publication title -
journal of applied crystallography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.429
H-Index - 162
ISSN - 1600-5767
DOI - 10.1107/s0021889813005888
Subject(s) - monochromatic color , optics , diffraction , laser , microbeam , crystallite , materials science , bandwidth (computing) , physics , computer science , computer network , metallurgy
The new X‐ray free‐electron laser source (SwissFEL) that is currently being developed at PSI will provide a broad‐bandpass mode with an energy bandwidth of about 4%. By using the full energy range, a new option for structural studies of crystalline materials may become possible. The proof of concept of broad‐bandpass diffraction presented here is based on Laue single‐crystal microdiffraction and the experimental setup on BL12.3.2 at the Advanced Light Source in Berkeley. Diffraction patterns for 100 randomly oriented stationary crystallites of the MFI ‐type zeolite ZSM‐5 were simulated assuming several bandwidths, and the statistical and structural results are discussed. With a 4% energy bandwidth, the number of reflection intensities measured in a single shot is significantly higher than with monochromatic radiation. Furthermore, the problem of partial reflection measurement, which is inherent to the monochromatic mode with stationary crystals, can be overcome.