Premium
A small‐angle neutron scattering model for polydisperse spherical particles with diffusion zones and application to soft magnetic metallic glass
Author(s) -
Heinemann André,
Hermann Helmut,
Wiedenmann Albrecht,
Mattern Norbert,
Wetzig Klaus
Publication year - 2000
Publication title -
journal of applied crystallography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.429
H-Index - 162
ISSN - 1600-5767
DOI - 10.1107/s0021889800013248
Subject(s) - scattering , neutron scattering , materials science , small angle neutron scattering , small angle scattering , neutron , biological small angle scattering , amorphous metal , neutron diffraction , alloy , molecular physics , optics , condensed matter physics , physics , nuclear physics , composite material , diffraction
An analytical expression for the small‐angle neutron scattering intensity of diluted systems of polydisperse spherical particles, with diffusion zones, embedded in a matrix is presented. It is used within a nonlinear regression procedure to analyse small‐angle neutron scattering experiments with polarized neutrons on an Fe 73.5 Si 15.5 B 7 CuNb 3 alloy. The results for the nuclear and magnetic scattering length densities allow verification of the inhibitor concept introduced for the explanation of the limited sizes of precipitates developing during nanocrystallization. In the case of amorphous Fe 73.5 Si 15.5 B 7 CuNb 3 alloy, the observed nanocrystals of the Fe 3 Si type are surrounded by an Nb‐enriched shell, which stops the growth of the precipitates. With the results of polarized neutron scattering experiments, it is shown that magnetic and nuclear small‐angle neutron scattering signals have the same origin. Additionally, the precision of the fits is improved by complementary use of polarized neutrons.